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Even and Odd q-Coherent States in a Finite- 
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The even and odd coherent states of a deformed harmonic oscillator in a finite 
s-dimensional Hilbert space are studied. It is shown that both for s even and s 
odd, the even q-coherent states exhibit quadrature and amplitude-squared 
squeezing, while the odd q-coherent states show an antibunching effect and 
amplitude-squared squeezing. 

1. INTRODUCTION 

Of late, q-coherent states have attracted a great deal of attention because 
of their possible applications in various branches of physics and mathematical 
physics (Biedenharn, 1989; Macfarlane, 1989; Sun and Fu, 1989; Ng, 1990; 
Haruo and Aizawa, 1990; Gray and Nelson, 1990; Bracken et  al. ,  1991; 
Quesne, 1991; Yu, 1992; Chiu et  al.,  1992; Zhedanov, 1993; Chang, 1992a, 
b). In particular, the quantal squeezing properties of q-coherent states associ- 
ated with a deformed harmonic oscillator and different quantum algebras 
(Buzek, 1991; Solomon and Katriel, 1993; McDermott and Solomon, 1994; 
Katriel and Solomon, 1990, 1991; Wang e t a l . ,  1995; Wang and Kuang, 1992, 
1993; Kuang and Wang, 1993; Si-Cong and Hong-Yi, 1995) have been studied 
in great detail and their applications to some concrete physical problems 
have been explored (Celeghini et  aL, 1991, 1995; Chaichian et  al . ,  1990; 
Floratos, 1991). 

The Pegg-Barnett s-dimensional truncated oscillator formalism (Pegg 
and Barnett, 1988, 1989; Barnett and Pegg, 1992; Gantsog et  al.,  1992), 
which is a very important development in the field of quantum optics, moti- 
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vated some authors to study the q-deformed harmonic oscillator and q- 
coherent states in finite-dimensional Hilbert space (Kuang, 1993; Yang and 
Yu, 1995), the relevance of quantum deformation in this truncated Fock basis 
being given by Ellinas (1992). For recent results on conventional coherent 
states in finite dimension see Buzek et al. (1992), Kuang et al. (1993, 1994), 
Miranowicz et al. (1994), Kuang and Chen (1994a, b), and Kuang and 
Zhu (1996). 

The purpose of the present paper is to construct the even and odd q- 
coherent states of a harmonic oscillator in a finite-dimensional basis and study 
their properties. Then we investigate their three important optical statistics 
properties--namely, quadrature squeezing, antibunching, and amplitude- 
squared squeezing. Such an investigation reveals the role of the deformation 
parameter q on squeezing and may thus prove to be helpful in finding the 
physical meaning of the parameter, which until now has been unclear. 

2. EVEN AND ODD q-COHERENT STATES AND THEIR 
PROPERTIES 

We consider the (s + 1)-dimensional Hilbert space t~, where s is an 
arbitrary positive integer. Then the number states In) ~ t~ are orthonormal 
and complete 

(nlm) = 8nm, ~ In)(nl = 1 (1) 
n = 0  

The q-creation aq t and q-annihilation aq operators and the number operator 
N are given by 

atq : ~ , f[-~ln)(n-  11, aq = ~ , f ~ l n -  l)(n,, N : ~ [n]ln)(nl 
n=J  n = l  n=0 

(2) 

where Ix] = (qX _ q-X)l(q _ q-j) and 0 < q < l, 1 < q < ~. The actions 
of the operators aq t and aq are 

atqln) = ~ + 1]In + 1); atqls) = 0 

aqln) = [ , ~ l n  - 1); aqlO) = 0 (3) 

and the commutation relations are given by 

aqatq _ qatqaq = q - iV_  [s + 1] Is)(sl IN, aq] = -aq,  [N, aq t] = aq t 

(4) 
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Now, we define the even and odd q-coherent states as 

I z, S)~q yen = NeV~"(z, s) cosh~(zatq) 10) 

s/2 Z 2m 
= N*v*"(z, s) ~ ,  12m) (5) 

m=0 

I z, S)q ~ = N~ s) sinh{(zaq*)10) 

s/2-1 z2m+l  

= N~ s) m=O ~ x/[2m + 1]! 12m + 1) 

where z is a complex number  and the normalization constants are given by 

N*~e"(z, s) = cosh~(z~) -1/2, N~ S) = sinh~(zz~ -It2 (6) 

is the complex conjugate of  z and the two polynomial  functions are 

cosh~(z~) = ~ sinh~(z~) = ~ (7) 
m=o [2m]! ' m=0 [2m + 1 ] ! 

Here we have taken s = even = 2m (say), m = 0, 1, 2 . . . . .  s/2. The  results 
for s = odd will be given later. The orthogonality and completeness relations 
are respectively given by 

i , . [cosh~(zY);  i = even 
= N ( z ,  s)Ni(z ,  S)ls inh~(zy)  ' i = odd q(Z , S[Z, S)~ i ' ( 8 )  

ovon , = 0 q (Z , SIZ, 

and 

L 
f cosh~(z~)lz, s)7~" Ten(Z, sl + sinh~(z~)lz, S)q ~ qOad(z, I s[ 'II" J 

X eXpq(--Izl 2) d2qz (9) 

Equations (8) and (9) show that even q-coherent states and odd q- 
coherent states are nonorthogonal, but they are orthogonal to each other and 
together they form a complete set. 

With the help of  equations (3) it can be easily checked that 

aqlz, s)~ wn = z tanh~(zz)l/21z, S)q ~ 

aqlZ, S)q ~ = z[coth~(zT, ) l /2 lZ,  s )~  yen - sinh~(z~)-tr2((/,c/~!)ls)] (10) 

a2qlZ, s)~ wen = z 2 [ I z ,  s )~ yen - -  coshSq(7~) - l /2 ( zS / [~ . . ) l s )  ] 

a21z, S)q ~ = z2[Iz, S)q ~  - sinh~(z~)-l/2(zs-l/x/~ -- l]!)ls - 1)] 
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Equations (10) indicate that unlike the q-coherent states in infinite dimension 
(Wang etal. ,  1995; Wang and Kuang, 1992 1993; Kuang and Wang, 1993; Si- 
Cong and Hong-Yi, 1995). The annihilation operator in the finite-dimension 
cannot act as a rotation between Iz, S)q ~ and Iz, s)~ wn. Moreover, Iz, s)~ v~n 
and Iz, S)q ~a are eigenstates of a 2 only in the limit s ---> 0% which is the well- 
known result for even and odd q-coherent states in infinite dimension (Wang 
et al., 1995; Wang and Kuang, 1992, 1993; Si-Cong and Hong-Yi, 1995). 

For s = odd = (2m + 1) (say), m = 0, 1, 2 . . . . .  (s - 1)/2, the even 
and odd q-coherent states are given respectively by 

IZ, s)~ ve" = cosh~(~) -v2 

IZ, q)qOda = sinh~(z~,)-l/2 

(s-- 1)/2 Z2m 
~ 12m) 

m=o x/[2m] ! 

(s- 1)/2 Z2m+l 
x/[2m + 1]! 12m + 1) (11) 

m=0 

where 

(s- I)/2 z2m (s-- 1)/2 z2m+l 

cosh~(z) = m=O ~ [2m]! '  sinh~(z)= m=O ~ [ 2 m +  11! (12) 

The orthogonality and completeness relations remain the same as in equations 
(8) and (9), respectively, with cosh~(z) and sinh,~(z) given by equation (12). 
The actions of the operators aq and a 2 on Iz, s)~ w" and Iz, s)~ a are given by 
the following relations: 

aqlZ, S)q ~ ---- Z coth~(z~,)l/2lZ, s~ yen 

aqlZ, s)~ yen ~-- z[tanhSq(zz)ll21z, S)q ~ - c o s h ~ ( z z ) - l / 2 ( z S / ~ ) l s ) ]  (13)  

a21z, S)q ~ = Z2[IZ, S)q ~ -- sinhSq(Z~)-1/2(zS/ [x/~.)ls) l 

a2qlZ, s)~Ven ~_~ Z2[IZ, S)~ven __ cosh~(z~)-,/2(z,-I/v/~- _ l][)ls - 1)l 

3. O P T I C A L  STATISTICS P R O P E R T I E S  O F  EVEN AND ODD q- 
C O H E R E N T  STATES 

3.1. Quadrature Squeezing 

In order to study the q-squeezing property of  Iz, s),~ ve" and Iz, S)q ~ we 
define Hermitian quadrature operators as (Ekert and Knight, 1989) 

1/2 
[mto\  s Xlq = ~ T )  Xq, x 2 = (mcoh)'/2p~q (14) 
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with 

h )in 
X~q = ~m~ (atq + aq), 

)'~ 
psq = i mhto (a*q - aq) (15) 

and 

q~a(Z ' sl(AXJq)21Z, S)q~a _ -21 odd[.q x~, Sl[ X I ,  X211z, S)q ~ 

2[cosh~-2(r2) sinh~-2(r2)l 
= r L ~ • cos 20 sinh~(r2 ) j (19) 

where j = 1, 2 and z = r exp(ie). 
Now equations (18) and (19) will respectively satisfy (17) provided 

cos 20 X 7- sinh~(r2) 
cosh~-2(r 2) 

cos 20 _~ 7-coth~-2(r 2) (20) 

where the upper and lower signs correspond to j = 1 and 2, respectively. 
Now from equations (7) it is evident that the fight-hand sides of  both 

the inequalities in (20) are positive. But, for r 2 < 1 and for all finite values 
of q, sinlg(r2)/cosh~-2(r 2) is less than 1 (which follows from the fact that 
In + 1]! > [n]!). Therefore, the first inequalities in (20) are satisfied for r E 

< 1 and finite q, but the second inequalities are never satisfied. 

(18) 

~qven( z' sI(AXJq) 21z" s)~ yen - • eve.&q .~, sl[Xlq, X2]Iz, s)~Ve, I 

cosh~_2(r2)l 
= r 2 tanh~(r 2) - cos 20 ~ j 

and they obey the uncertainty relation 

q(Z, si(ax )21z, 
1 

_ - I t ( z  , sl[X~q, X2]lz, s)~l 2 (16) 
4 

where i = even, odd and the variances are defined by q( (AXJ)2 )q  = q(XJq2)q 
- (X~ 2, where j = 1, 2. 

We will say a state q-squeezed in the X{ variable if 

~(z, sl(AXYq)21z, SYq(�89 I~q(Z, sltXlq, X~llz, s)~l (17) 

where j = 1, 2 and i = even, odd. 
Making use of equations (3) and (5)-(7), we get the expectation values 
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Therefore for s = even, the even q-coherent  states exhibit  q-quadrature 
squeezing in both the variables Xq I and X 2 for r 2 < 1 and finite q, but the 
odd q-coherent states are not q-squeezed. 

The degree o f  squeezing can be measured by the functions (Hong and 
Mandel,  1985a, b) S,~ ven defined as (A = Xq I or X 2) 

where 

C S~ yen = - (21) 
d 

e v e n  e v e n  e v e n  C = 2 q(Z, s I (AA)Zlz ,  S)'q ve" - Iq ( z ,  sl[Xlq, X2]Iz, S)q [ 

d = lev'~(Z, sI[X~, X~11Z, s}~V~"l (22) 

The squeezing condition in this case takes the form 

S ~  n < 0 or s g n <  0 

Evaluation of  the expectation values in equation (21) gives 

e S]  re" = - (23) 
f 

where 

e ---- 2r2[--cos 20 cosh~-2(r 2) + sinh~(r2)] 

f = qr  2 sinh~-2(r 2) + cosh~-2(q- l r  2) - r 2 sinh~(r 2) (24) 

where the upper and lower signs correspond to A = Xq I and X 2, respectively. 
In Fig. 1, sx~n is plotted for f ixed s and q and for different values of  

q . . . 
Izl = r. From the figure It Is evident that different values of  the parameter  

0.5 
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- - q - 1 2  
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Fig. 1. Plot of S~Vq~" for s = 6, q = 0.9, 1.2, 1.5, 2.0, and for different values of r. 



Even and Odd q-Coherent States 1531 

q correspond to different squeezing, so that the deformation parameter q may 
be a quantum relevant to the degree of squeezing. 

For the q-squeezing properties of Iz, S)q ~ and Iz, s)~ re" for s = odd = 
2m + 1 (say), m = 0, 1, 2 . . . . .  (s - 1)/2, we have 

 q(Z,  l(aXJq) lz,  ltx , x llz, (25) 
provided 

and 

provided 

cos 20 X g c~ (26) 
sinh~-2(r 2) 

eve~(z, s[(AXJq)2[Z ' ~'qr lx~.,leven~'qxZ, sl[X~, X2I Iz, S)qeVe" I (27) 

cos 20 ~ ~tanh~-2(r 2) (28) 

where in equations (26) and (28) the upper and lower signs correspond to j 
= 1 and 2, respectively. 

The right-hand sides of equations (26) and (28) are both positive. But 
for r 2 < 1 a n d 0  < q < 1, 1 < q < ~, costg(r2)/sinh~(r 2) > 1, while 
tanh~-2(r 2) < 1 (this follows from the fact that [n + 1]! > In]!). So conditions 
(28) are satisfied, but conditions (26) are not. 

Therefore both for s = even and s = odd the even q-coherent states 
exhibit q-quadrature squeezing, but the odd q-coherent states do not. 

3.2. Antibunching Effect 

It is well known that if the normalized second-order correlation function 
of a light field (Walls, 1983) g2(0) < l, then the light field exhibits an 
antibunching effect. In a similar way, we introduce the second-order q- 
correlation function 

g2,,(0) = ~(z, slatq2a2qlZ, S)iq 
~q(Z, sla~qlZ, s)~' i = even, odd (29) 

It is straightforward to evaluate the expectations in equation (29) and 
we have for s = even 

g2q.even(0 ) = e~ cosh~-2(r 2) 
sinh~(r 2) 

g2q,odd(0 ) = tanh~-2(r2) sinh~(r 2) 
cosh~_2(r2 ) (30) 
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From the discussions following equation (20) it can be proved that Iz 
s)~ a exhibits an antibunching effect, but Iz, s)~ yen does not. 

For s = odd we have 

tanh~(r 2) sinh~-2(r 2) 
g2q.o~l(0 ) = cosh~(r 2) 

coth~-2(r 2) cosh~(r 2) 
gq2 even(0 ) = sinh~_2(r2 ) (3 l) 

From the discussions following equations (26) and (28) it follows that 
Iz, S)q ~176 exhibits an antibunching effect, but Iz, s)~ yen does not. 

So for both s = even and odd, the odd q-coherent states exhibit an 
antibunching effect, but the even q-coherent states do not. 

3.3. Amplitude-Squared Squeezing 

In analogy with the definition of  amplitude-squared squeezing for the 
single mode of  the electromagnetic field (Hillery, 1987), we introduce the 
q-analogue of the amplitude-squared squeezing in terms of q-quadrature 
operators 

i (atq2 + a~) (32) 1 (aq2 + aqt2), y2 = rq'= 

These operators obey the commutation relation 

i . 2 t2 trY, (a q - . 2n2 ,  = ~,q .qj (33) 

and the uncertainty relation 

~(Z, sl(AYlq)21z, $>~ i q(Z, s[( A y2)2IZ, S)~ 

--> +l~(z, sl[V~, y2IIz, s)~l 2 (34) 

where i = even, odd and the variances are defined as usual. 
A state is said to be q-amplitude-squared squeezed if 

iq(Z, s[(ayj)2[Z" S)iq <1.2 qx~,i[- s[[yl, y2q][Z ' Syq[ ( 3 5 )  

where j = 1, 2 and i = even, odd. 
Making use of equations (3) and (5)-(7) we get for s = even = 2m 

(say), m = 0, 1, 2 . . . . .  s/2, 
eve~(z, sI( A YJq)2Iz, s)eVenq __ ~'1 even[q,Z, sl[Y~, y2]Iz, S)qeVen [ 

= ~f+(r, O, s) for j = 1 
[f_(r, O, s) - r4x 2 for j = 2 (36) 
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where 

1 c~ [ f+(r, 0, s) = ~ 2c0s220 +__cosh~-4(r 2) 

cosh~-4(r 2) + cosh~-2(r2)} 

z = r exp(i0) and x = cosh~-2(r2)/cosh~r2). 
Therefore 

r s[(Ayj)2IZ, s}~en < 12 even(:,qx., sl[Yq 1, Y2qllZ, s}; yen[ 

when 

where 

_ [cosh~-2(r2)] 2] 

+ cosh~(r 2) J 

(37) 

(38) 

+ sinh~-2(r 2) ~ sinh~-4(r2)] (42) 

c~ and A = y - x (40) 
y - cosh~_2(r2 ) 

Now it can be shown that y < 1 and x < 1 for all r and finite q. As 
cos220 lies in the range (0, 1), the first of the inequalities in (39) will be 
satisfied when A < 0, but the second of  the inequalities in (39) will be 
satisfied for A > 0, as well as for A < 0 and 0 = (2n + l)1r/4, n = 0, l, 
2~ . . . .  

Therefore for s = even, both the components yql and y2 are amplitude- 
squared squeezed for even q-coherent states. 

For the odd q-coherent states we have 

 l(aYJq)  z, - �89 r qllZ, 

= [g+(r, O, s) for j = 1 (41) 
[g_(r,  O, s) - r4t 2 for j = 2 

where 

= l r4s inh~( r2) - l{  [ ~ ' J  g• 0, s) ~ 2 c0s220 -sinh~-4(r  2) -T- sinh~-2(r2)2] 

y -  1 for j = I 
2.4 

cos220 < (39) 
1 x - 1  for j = 2  
2 2A 
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Therefore 

sl(ar ) lz, S)q < �89 slit,q, r q]lZ, S)q l 

when 

where 

w2z B1  for j =  1 

c~ < 11 t_~- 1 

12 2B for j = 2 

(43) 

sinh~-2(r 2) 
t = sinl~(r2 ) (44) 

sinh~-4(r 2) 
B = w - t  and W-sinh~_2(r2 ) (45) 

Now w and t are both less than 1 for all r and finite q. Therefore as 
cos220 lies in the range (0, 1), the first of the inequalities in (44) will be 
satisfied when A < 0, but the second of the inequalities will be satisfied for 
A > 0 a n d f o r A  < 0 , 0  = (2n + l)~/4, n = 0 ,  1 ,2  . . . . .  

Therefore the odd q-coherent states exhibit amplitude-squared squeezing 
for both the components yql and y2. 

For s = odd = (2m + I) (say), m = 0, 1, 2 . . . . .  (s - 1)/2, equations 
(37)-(45) will remain the same as for s = even and consequently the results 
concerning the amplitude-squared squeezing for even and odd q-coherent 
states will also hold good. 

Therefore both for s = even and s = odd the even and odd q-coherent 
states exhibit amplitude-squared squeezing for yqi and y2. 

4. CONCLUSION 

We have constructed the even and odd q-coherent states in a finite- 
dimensional Hilbert space and discussed some of their properties. It is found 
that though the properties of the finite-dimensional even and odd q-coherent 
states approach those of the even and odd q-coherent states in infinite dimen- 
sion, these properties are nontrivially different if the dimension of the Hilbert 
space is finite. Also, there are significant differences in the aspects of the 
optical statistics properties of even and odd q-coherent states. For both 
s even and s odd, the even q-coherent states exhibit q-quadrature and q- 
amplitude-squared squeezing, while the odd q-coherent states show a 
q-antibunching effect and q-amplitude-squared squeezing for some values of 
z and for all finite q. Moreover, it is clear that different values of the parameter 
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q correspond to different degrees of squeezing, so that the deformation param- 
eter may be a quantum relevant to the degree of squeezing. 
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